Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Clinical and Environmental Isolates of Burkholderia pseudomallei

نویسندگان

  • He Wang
  • Ya-Lei Chen
  • Shih-Hua Teng
  • Zhi-Peng Xu
  • Ying-Chun Xu
  • Po-Ren Hsueh
چکیده

Burkholderia pseudomallei is not represented in the current version of Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) system. A total of 66 isolates of B. pseudomallei, including 30 clinical isolates collected from National Taiwan University Hospital (NTUH, n = 27) and Peking Union Medical College Hospital (PUMCH, n = 3), and 36 isolates of genetically confirmed strains, including 13 from clinical samples and 23 from environmental samples, collected from southern Taiwan were included in this study. All these isolates were identified by partial 16S rDNA gene sequencing analysis and the Bruker Biotyper MALDI-TOF MS system. Among the 30 isolates initially identified as B. pseudomallei by conventional identification methods, one was identified as B. cepacia complex (NTUH) and three were identified as B. putida (PUMCH) by partial 16S rDNA gene sequencing analysis and Bruker Biotyper MALDI-TOF MS system. The Bruker Biotyper MALDI-TOF MS system misidentified 62 genetically confirmed B. pseudomallei isolates as B. thailandensis or Burkholderia species (score values, 1.803-2.063) when the currently available database (DB 5627) was used. However, using a newly created MALDI-TOF MS database (including B. pseudomallei NTUH-3 strain), all isolates were correctly identified as B. pseudomallei (score values >2.000, 100%). An additional 60 isolates of genetically confirmed B. cepacia complex and B. putida were also evaluated by the Bruker Biotyper MALDI-TOF MS system using the newly created database and none of these isolates were identified as B. pseudomallei. MALDI-TOF MS is a versatile and robust tool for the rapid identification of B. pseudomallei using the enhanced database.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media

We evaluated the accuracy of the Bruker Biotyper matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) system at identifying clinical isolates of Aspergillus species that were grown on agar media. A total of 381 non-duplicate Aspergillus isolates representing 21 different Aspergillus species identified by molecular analysis were included in this study. The ...

متن کامل

Evaluation of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of blood isolates of Vibrio species.

Among 56 blood isolates of Vibrio species identified by sequencing analysis of 16S rRNA and rpoB genes, the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system correctly identified all isolates of Vibrio vulnificus (n = 20), V. parahaemolyticus (n = 2), and V. fluvialis (n = 1) but none of the isolates of serogroup non-O1/O139 (non-...

متن کامل

Safety and Accuracy of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Highly Pathogenic Organisms

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) sample preparation methods, including the direct, on-plate formic acid, and ethanol/formic acid tube extraction methods, were evaluated for their ability to render highly pathogenic organisms nonviable and safe for handling in a biosafety level 2 laboratory. Of these, the tube extraction procedure was th...

متن کامل

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Burkholderia pseudomallei from Asia and Australia and differentiation between Burkholderia species

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for rapid bacterial identification. Studies of Burkholderia pseudomallei identification have involved small isolate numbers drawn from a restricted geographic region. There is a need to expand the reference database and evaluate B. pseudomallei from a wider geographic distribution th...

متن کامل

Misidentification of a Rare Species, Cryptococcus laurentii, by Commonly Used Commercial Biochemical Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Systems: Challenges for Clinical Mycology Laboratories.

Forty-two putative Cryptococcus laurentii isolates identified by the Vitek 2 system were collected in China. The gold standard, internal transcribed spacer (ITS) sequencing, confirmed that only two isolates were genuine C. laurentii. Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry was able to identify the C. laurentii isolates with an expanded custom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016